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Abstract – 

Inspecting the exteriors of buildings is a slow and 

risky task for workers, especially in high-rise 

buildings. Moreover, some areas are difficult to reach 

for large buildings, and in some cases, the inspections 

cannot be adequately done. In recent years, there has 

been an increase in open-source artificial intelligence 

(AI) technologies and commercially available 

Unmanned Aerial Vehicles (UAVs) with AI-assisted 

deep learning capabilities. They can provide a low-

cost, open-source, and customizable methodology for 

building exterior inspections that are readily 

accessible for construction and facility managers.  

This study presents a methodology to use UAVs 

and deep learning technology to conduct an 

automated inspection for cracks on high-rise 

buildings - improving the efficiency of the process and 

the workers' safety while reducing data-collection 

errors. The proposed methodology is divided into four 

components: 1) Developing a UAV system to capture 

the exterior wall images of the building in an 

autonomous way, 2) Collecting data, 3) Processing 

and analyzing the images captured for cracks using 

deep learning, and 4) Rendering the identified 

locations of the cracks on a 3D model of the building, 

constructed using photogrammetry, for clear 

visualization.  

This study focuses on the virtual simulation of the 

methodology. The UAV used contains a built-in 

camera to capture the images of the building from 

different sides. Data Collection, Image-Analysis, and 

Photogrammetry are done using publicly available 

open-source deep learning and simulation 

technologies. The generated code for the UAV 

simulation and the crack detection algorithm with the 

pre-trained data model are released on GitHub. 
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1 Introduction 

Building inspection using only manual labor (i.e., 

human workers) is a time-consuming and, in some cases, 

dangerous process.  Traditionally, the visual inspection 

part of the exterior of a building requires an inspector to 

abseil down over different sides of a building [1]. Not 

only is this a risky process, but also subjective and prone 

to errors. Moreover, the inspection of buildings for 

quality and identification of defects is a repeating process 

with intervals usually between 5 to 10 years, depending 

on the maintenance plan [2]. In general, manual 

inspections do not leave consistent computerized (i.e., 

digital) data that can be later used to compare the results 

of successive inspections over time. 

One of the most common indicators determined in 

visual inspection to assess the damage or deterioration of 

a building is the cracks on the walls. In recent years, there 

has been an increase in research that utilizes image 

processing techniques and Artificial Intelligence (AI) 

technologies to detect and classify cracks with varying 

levels of success [3]. 

The emergence and widespread use of commercial 

Unmanned Aerial Vehicles (UAVs) in this decade have 

allowed an easier method to collect image and video data. 

Therefore, the ability to capture building image data 

using UAVs and analyze them for defects using AI and 

image-processing techniques has become a reality. The 

use of UAVs for the data collection process is already 

being used in some aspects of the industry, but the 

automation of the processing of said data is still 

something that has not been fully implemented. To 

address that, this approach helps with the automation of 

the whole inspection process and can improve the 

precision compared to traditional (i.e., manual) building 

inspection methods. 
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This study proposes one readily accessible and cost-

effective methodology for the inspection of building 

exteriors. The rest of this article is organized as follows. 

First, a literature review discusses the recent state-of-the-

art research, including a discussion of UAVs, flight path 

planning, crack detection using deep learning, and the 

photogrammetry visualization process of UAV captured 

images. Then, the research methodology section 

discusses the process of developing an Automated 

Building Exterior Crack Inspection System (ABECIS), 

along with assumptions made and limitations of the 

study. After that, an example illustrates the methodology 

with a proof-of-concept demonstration in a virtual 

simulation environment. Finally, the rest summarizes the 

results, discussion, and outlook. 

2 Literature Review 

For this study, the literature review focused on 

publications in the proceedings of the International 

Symposium on Automation and Robotics in Construction 

(ISARC), as well as ICACT [4], Automation in 

Construction [5], and Drones [6].  

Through keyword-based search, this study identified 

the state-of-the-art research trends in construction 

automation, using the following keywords: “Deep 

Learning”, “photogrammetry”, “UAVs”, “crack 

detection”, “building inspection”, and “computer 

simulation”. The sources are selected based on the clarity 

and novelty in the methods they present. 

From the literature review, it was found that many 

ISARC papers deal with topics relating to building crack 

analysis and UAV path planning. Similar studies on 

crack detection using UAVs include the work by Phung 

et al. [7], who carried out crack detection experiments on 

wooden walls. They used a UAV to take images of the 

suspected surfaces, which then were stitched and 

processed based on histogram analysis. They developed 

a peak detection algorithm for image clustering and a 

locally adjustable thresholding technique for crack 

detection. Results from their experiments showed that out 

of two crack candidates, only one was detected.  The 

authors planned to extend their work to improve their 

algorithms to account for other crack properties such as 

length, width, and orientation.  

In literature outside ISARC, attempts to make use of 

UAVs for building inspection have been investigated. 

For example, Choi and Kim [4] used an open-source 

hardware-based Hexa-copter (UAV with six propellers) 

to acquire building images and videos. Afterward, the 

images and videos were converted to grayscale, and the 

Canny edge detection algorithm was used to detect the 

edges and cracks. The authors proposed follow-up 

studies by installing various sensors and thermal infrared 

cameras on the UAV.  

The study by Rakha and Gorodetsky [5] provides a 

comprehensive literature review on the use of UAVs to 

visualize the heat transfer in buildings with infrared 

imaging and create digital models using 3D 

photogrammetry. They presented a procedure to generate 

a 3D model of a Syracuse University building using a DJI 

Inspire 1 drone. Their procedure can be summarized as 

follows. First, images of the building were captured by 

the drone with autonomous path planning. Then, the 

Pix4D program was used to generate a 3D point cloud of 

the building from the 2D images captured. However, the 

software used in their study was not open-source.  

A summary of literature utilizing UAV and image-

processing techniques for crack detection is given in 

Table 1. 

Table 1. Comparison of UAV and image processing-

based methodologies for crack detection 

Author 
Level of 

automation* 

Open-

source 

softwar

e used? 

Consumer 

drones 

used? 

Choi and Kim[4] N/A No No 

Rakha and 

Gorodetsky [5] 
FA No Yes 

Phung et al. [7] FA No Yes 

Kim et al. [8] N/A No Yes 
*Fully autonomous (FA), Not mentioned (N/A) 

 

Within the scope of this specific literature review, 

there have not been studies that emphasize the possibility 

of utilizing publicly available open-source software and 

off-the-shelf consumer drones to carry out building crack 

detection processes. Therefore, to make it more 

accessible, the proposed method only considers open-

source software to provide a cost-effective and easy-to-

replicate approach compared to existing ones since 

expensive or specialized hardware and software are not 

necessary.  

2.1 UAV for Building Exterior Inspection 

2.1.1 Commercially Available UAVs 

UAVs, also known as drones, had origins in military 

research. However, small and inexpensive commercially 

available UAVs, built from easily available components, 

are becoming increasingly common as an emerging 

technology. Some of the leading consumer UAVs include 

DJI, 3DRobotics, and Parrot [9]. 

For this research, a DJI Mavic 2 drone (Figure 1) is 

used in a simulated environment. The drone used is a 

lightweight UAV with a high-resolution camera and uses 

GPS and GLONASS technologies for navigation. Once 

fully charged, it has an autonomy of 31 minutes under 

normal conditions and usage [8]. 
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Figure 1. DJI Mavic 2 [10] 

2.1.2 Advantages and Limitations of UAVs 

The benefits of using UAVs for building inspection 

are numerous. Autonomous navigation enables a high 

level of automation, and the flight ability allows the UAV 

to reach points on structures or roofs, which are otherwise 

difficult or dangerous to access. Nevertheless, the current 

autonomous features of the UAVs are quite limited. For 

instance, there are inevitable mismatches between the 

planned flight paths and real paths followed by the drone 

due to localization errors caused by built-in GPS [7], and 

under most regulations, drones are not allowed to fly 

without an operator and need to stay within the operator’s 

visual line of sight [11].  

2.1.3 Flight Path Planning Methods 

Multiple flight patterns exist for UAVs to explore 

areas (Figure 2) [6]. Nevertheless, for building exterior 

inspections, varying external conditions such as different 

viewpoints, view angles, and daylight must be considered 

for a successful exploration [12]. The process is simpler 

when the building is divided into rectangular walls for the 

UAV to explore in multiple phases. For the drone to 

inspect the greatest area while remaining autonomous, 

the back-and-forth path in Figures 2 (a) and (b) prove 

sufficient and effective. 

 
Figure 2. Simple UAV flight patterns in rectangular areas 

(a) Parallel; (b) Creeping Line; (c) Square; (d) Sector 

Search (adapted from [6]) 

2.2 Building Cracks 

2.2.1 Crack Classification 

In visual building inspection for cracks, three factors, 

namely the distribution, width, and the depth of the 

cracks, are identified, with the distribution and the width 

being more important factors than depth [2]. 

Moreover, the building cracks can be classified 

based on their pattern [13] into one of the following 

categories: (a) alligator cracking; (b) block cracking; (c) 

longitudinal cracking; (d) hair cracking; (e) diagonal 

cracking; (f) multi cracking; and (g) transverse cracking. 

For this research, the cracks considered are those 

discussed above, except for the alligator cracking and 

hair cracking due to data limitations to training the 

algorithm. 

2.3 Deep Learning and Crack Detection 

2.3.1 Open-Source Deep Learning Frameworks 

Deep Learning is a branch of artificial neural 

networks, an AI technique widely used to classify images 

[14]. Deep Learning image classification methods began 

gaining popularity in 2012 [15] and outperform existing 

classification methods (such as Local Binary Patterns 

(LBP) and shape-based algorithms [14]). In recent years, 

there has been an increase in publicly available open-

source software libraries which allow users to build 

artificial neural networks for Deep Learning very easily, 

with Keras [16] being the most popular open-source 

library. This research utilizes Keras to build a network to 

classify the segments of the collected images of the 

building as “containing crack” or “no crack.” 

2.3.2 Crack Detection Algorithm 

In order to classify images using Deep Learning, the 

algorithm must be trained first. The training requires 

thousands of pre-classified images. The dataset can be 

obtained by oneself or using publicly available data sets.  

Regarding the crack detection on walls, researchers, 

such as Özgenel, have shared their dataset containing 

pre-classified images of wall cracks publicly online [3]. 

This study uses Özgenel’s dataset to train the Deep 

Learning algorithm. 

2.4 Photogrammetry Visualization 

In order to visualize the data collected from UAVs, 

two methods, namely LiDAR and photogrammetry, can 

be used. However, LiDAR requires specialized, 

expensive, and heavy equipment (around 14 kg [17]), 

which is not ideal to be mounted on a commercial off-

the-shelf UAV, which typically has a limited payload 

(0.83 kg in the case of the DJI Mavic 2 [18]). 

Therefore, in this research, photogrammetry is used 

for a 3D reconstruction from the data collected from a 

UAV. Photogrammetry is the technique of building a 3D 

model from numerous images captured from multiple 

viewpoints around an object (in this case, a building). 

Normally, specialized professional drone mapping 

software such as Pix4D [19] is used in the industry. 

However, such software can be quite costly. An 

alternative is to look at open-source photogrammetry 
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software developed by the community. For example, 

Meshroom [20] by AliceVision is an open-source 

software that provides results comparable to most 

industry-grade software. In addition, Meshroom can 

perform photogrammetry autonomously and has a very 

easy learning curve, making it ideal for this application. 

3 Research Methodology 

3.1.1 Real-world constraints and Assumptions 

In the real world, numerous constraints can interfere 

with the use of UAVs for building inspections. Some of 

these practical challenges include the following:  

● According to US Federal Aviation 

Administration regulations, UAVs need to be 

operated by a registered operator, and they must 

fly within the visual line of sight of the operator 

[11]. 

● The image data collection will only yield optimal 

results if favorable lighting and weather 

conditions are fulfilled. 

● In urban areas, the existence of adjacent 

buildings can interfere with the autonomous path 

planning of the UAV. Moreover, flying over 

pedestrians, traffic, etc., is also a big constraint. 

● Photogrammetry technology has limitations. 

Depending on the camera angle, shadows in 

images, and blind spots, the constructed 3D 

visualization and image-processing results could 

diverge from real-world data [21]. 

● Moreover, the UAV, especially the off-the-shelf 

commercial ones, have limited battery life, and 

the survey might need to be done in multiple 

stages. 

For this study, these constraints are relaxed. An ideal 

situation with only one building of interest, isolated in the 

middle of an open and flat area under favorable weather 

conditions and lighting, was studied via computer 

simulation. 

3.1.2 System Architecture 

The overall system architecture for crack detection 

using UAVs and deep learning is proposed in Figure 3. It 

includes the UAV system, 3D model photogrammetry, 

and deep learning image analysis. The code for the UAV 

simulation and the crack detection algorithm with the 

pre-trained data model [22] have been released on 

GitHub for other researchers to use. 

 

Figure 3. System architecture of the Automated Building 

Exterior Crack Inspection System (ABECIS) 

3.1.3 Part 1: Data Capture using UAV  

An algorithm was developed in C by implementing a 

Proportional-Integral-Derivative (PID) controller [23] to 

control the position of the drone hovering in mid-air. The 

algorithm uses the Creeping Line flight pattern, shown in 

Figure 2 (b), to autonomously explore one side of the 

rectangular wall of the building. Images from the drone 

camera are captured when the drone is near the wall at 

fixed intervals. The entire process is autonomous, and a 

human operator is only required to activate the drone and 

place it at the bottom of the wall to be analyzed. The 

operator could also assist (i.e., take control of the UAV) 

in case of emergency. 

The algorithm and the autonomous drone image 

capture process are simulated using Webots, a free open-

source mobile robot simulation software [24]. The 

captured images are then stored for further analysis. 

3.1.4 Part 2: 3D Photogrammetry Model 

Using the images captured by the drone, a 3D model 

of the building segment is generated using Meshroom 

photogrammetry software for clear visualization. 

Meshroom creates a 3D mesh and a texture automatically 

from the images. The generated texture is to be analyzed 

for cracks using deep learning and rendered later on the 

3D model of the building.  

3.1.5 Part 3: Deep Learning Image Analysis 

A deep learning image classification algorithm was 

developed and trained based on Google’s Xception 

convolutional neural network [25].  Özgenel’s dataset 
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[3], composed of 20,001 non-crack images and 20,001 

crack images with 227 × 227 pixels resolution, was used 

to train the image classification algorithm. Figure 4 

shows an example of the sample training data from the 

dataset used. 

 
Figure 4. (a) Sample non-crack images from original 

dataset (b) Sample crack images from the original dataset 

(reproduced from [3]) 

The image classification algorithm was developed 

using Keras, an open-source Python deep learning 

library. The algorithm operates in the following steps: 1) 

load pre-trained model 2) take the input image (the 

texture generated by 3D photogrammetry), 3) split each 

image into an array of rectangular segments, 4) perform 

analysis on each segment and classify it as “crack” or 

“no-crack”, 5) mark the segments which are classified as 

“crack” for visualization later. The process is visualized 

in Figure 5. 

 
Figure 5. Deep Learning Image Analysis Algorithm 

4 Implementation 

A small example implementation in an ideal 

simulated environment is then carried out to illustrate the 

research methodology discussed. The following objects 

are investigated for cracks in this study.  

1. A tall building with cracks on the top floor and 

2. A rectangular wall with cracks 

The rectangular wall is painted plain white, contains 

a single long crack, and is used to study whether the 

algorithm can identify the location of the cracks. The tall 

building contains cracks present on the colored tiles and 

is used to study whether the algorithm can identify the 

cracks superimposed on other textures. 

In the following examples, many assumptions are 

being made. Firstly, the drone inspection is carried out on 

a single building or a wall without any neighboring 

buildings. Secondly, the environment is free from 

obstacles that might interfere with the drone in the real 

world, such as trees, overhead cables, pedestrians, and 

vehicles.  

For Part 1: Data Capture using UAV, a simulated 

environment was constructed (Figures 6 and 7). The 

UAV autonomously captures a wall of the building 

following a Creeping Line flight pattern. The 

autonomous flight algorithm takes the starting 

coordinate, length of the wall, distance from the wall, and 

minimum/maximum heights as input parameters. The 

building images are taken every second by the drone and 

are transferred to the computer for analysis. 

 

 
Figure 6. Autonomously Capturing Images of a tall 

building with UAV (Webots Simulation) 

 

 
Figure 7. Autonomously Capturing Images of a wall with 

UAV (Webots Simulation) 

 

Once the drone captured images are ready, Part 2: 

3D Photogrammetry model generation is carried out 

using Meshroom photogrammetry software for both the 

building and the wall. Meshroom analyzes the different 

angles that the images are taken from and constructs the 

641



38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

 

3D mesh of the back wall of the building (Figure 8). A 

texture is also generated with the model (Figure 9 a and 

b). 

 

 
 

Figure 8. Rendering 3D Photogrammetry Model of 

Building Segment from captured images in Meshroom 

 

 
(a) 

 
(b) 

Figure 9. Textures of (a) the building and (b) the wall, 

generated from captured images by Meshroom 

 

Once the texture and 3D mesh are generated by 

Meshroom, Part 3: Deep Learning Image Analysis is 

carried out using the generated building texture as the 

input image for the deep learning algorithm. The deep 

learning algorithm used has the following adjustable 

parameters: 

1. Tile Resolution (TR): The dimensions of the 

smallest square images that the algorithm will 

split the building textures. Then, the algorithm 

performs analysis for cracks on each tile, and  

2. Confidence Interval (CI): The cut-off 

confidence threshold in % to decide whether 

each tile contains a crack or not. 

The deep learning algorithm segments the texture 

into multiple smaller square images (tiles) and analyses 

each image to see if cracks are present. Images with a 

“crack” confidence interval greater than 85% are marked 

with red crosses. The 85% CI was chosen based on 

previous experiments since this value gives the lowest 

number of false positives. From experiments, 75% CI 

gives two false positives, 85% gives no false positives, 

and 100% does not detect cracks.  Finally, all smaller 

images are stitched together to form the original building 

texture, but with the cracks marked. This analyzed 

texture is then rendered onto the 3D model of the building 

generated in Part 2 to generate a 3D report as in Figure 

10 and Figure 11. 

 

 
Figure 10. Example of a 3D report for building, with the 

suspected areas of cracks on the 3D model of the wall 

marked with an ‘X’ 

 

 
Figure 11. Example of a 3D report for wall, with the 

suspected areas of cracks on the 3D model of the wall 

marked with an ‘X’ 

5 Results and Discussion 

On the 3D report for the building (Figure 10), the 

proposed method correctly identified the location of most 

cracks. In the case of the wall (Figure 11), it missed a 

very thin hairline crack on the right-hand side.  

It is suspected that two parameters (TR and CI) 

contribute to the failure of detection of cracks in our 

implementation example. Firstly, the cracks may be too 

small to be seen by a camera mounted on the drone, 

perhaps due to bad lighting conditions. Secondly, the 

resolution of textures used for cracks may be altered by 

the Webots simulation environment, making the crack 

textures not as realistic as they can be.  

This study examines a general overview of the crack 

detection process (i.e., is a part of one crack detected?) 

rather than how much detail of one crack is detected. To 

provide a quantitative measure for the success of our 

approach, we used a measure called Success Percentage. 

To calculate Success Percentage, the total number of 
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cracks on generated building texture, NT, and the number 

of cracks correctly detected (partly or fully), NC are 

counted. Success Percentage is then defined as  

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑁𝐶

𝑁𝑇

 × 100 

 
Figure 12. Texture of the wall with cracks identified 

 

The calculated Success Percentages are given in 

Table 2 below.  

Table 2. Success Percentage Results 

Object 

Total 

Number of 

cracks 

Number of 

cracks 

detected 

(partly or 

fully) 

Success 

Percentage 

Building 2 2 100% 

Wall 10 8 80% 

 

In this particular example, the Success Percentage 

for the wall crack detections is quite high. Except for 

hairline cracks on the wall, most cracks are detected.  

 

Table 3. Possible negative outcomes of different input 

parameters 

However, the Success Percentage can be increased 

or decreased by varying the tile resolution and confidence 

interval input parameters of the algorithm. Possible 

undesirable outcomes for using too high or too low input 

parameters for the algorithm are summarized in Table 3. 

From experiments, CI of 98% and above does not detect 

cracks. The input parameter should be tuned to suit the 

inspection requirements.  

Nevertheless, the proposed method can accurately 

pinpoint the estimated locations of most cracks on the 

wall’s surface at a high level (i.e., whether a crack exists 

or not). Once the estimated locations are identified, one 

can repeat the process on the suspected areas and move 

the drone closer to the wall for a clear view of the cracks 

for further investigation. 

6 Conclusion and Outlook 

This study proposes a low-cost and accessible 

methodology for identifying cracks on walls using off-

the-shelf consumer drones, free and open-source 

photogrammetry software, and Deep Learning libraries. 

Although the process failed to detect very thin cracks in 

the simulated environment, it was able to identify the 

estimated locations of most cracks correctly. Interested 

readers can easily replicate our method by using the 

software mentioned above and our algorithm that has 

been released on GitHub [22].  

Ongoing work by the authors includes extending this 

study to use an actual drone to conduct the data capturing 

process in a real environment. We also expect to improve 

the quality of crack images taken by flying the drones 

close enough to the building. Moreover, future work 

includes performing a detailed analysis of each of the 

cracks and providing more information, such as crack 

lengths, type of cracks, and the estimated scope and cost 

of repair to building owners and facility managers. 
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